Powered by Blogger.

Emergence Of Formal Equations

--Kode Iklan--

Emergence Of Formal Equations

Perhaps the most basic notion in mathematics is the equation, a formal statement that two sides of a mathematical expression are equal—as in the simple equation x + 3 = 5—and that both sides of the equation can be simultaneously manipulated (by adding, dividing, taking roots, and so on to both sides) in order to “solve” the equation. Yet, as simple and natural as such a notion may appear today, its acceptance first required the development of numerous mathematical ideas, each of which took time to mature. In fact, it took until the late 16th century to consolidate the modern concept of an equation as a single mathematical entity.

Three main threads in the process leading to this consolidation deserve special attention:

Attempts to solve equations involving one or more unknown quantities. In describing the early history of algebra, the word equation is frequently used out of convenience to describe these operations, although early mathematicians would not have been aware of such a concept.

The evolution of the notion of exactly what qualifies as a legitimate number. Over time this notion expanded to include broader domains (rational numbers, irrational numbers, negative numbers, and complex numbers) that were flexible enough to support the abstract structure of symbolic algebra.

The gradual refinement of a symbolic language suitable for devising and conveying generalized algorithms, or step-by-step procedures for solving entire categories of mathematical problems.
These three threads are traced in this section, particularly as they developed in the ancient Middle East and Greece, the Islamic era, and the European Renaissance.

Previous
Next Post »